skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Galán, José_María_Gabriel y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseThe historical biogeography of ferns is typically expected to be dominated by long‐distance dispersal due to their minuscule spores. However, few studies have inferred the historical biogeography of a large and widely distributed group of ferns to test this hypothesis. Our aims were to determine the extent to which long‐distance dispersal vs. vicariance have shaped the history of the fern family Blechnaceae, to explore ecological correlates of dispersal and diversification, and to determine whether these patterns differ between the northern and southern hemispheres. MethodsWe used sequence data for three chloroplast loci to infer a time‐calibrated phylogeny for 154 of 265 species of Blechnaceae, including representatives of all genera in the family. This tree was used to conduct ancestral range reconstruction and stochastic character mapping, estimate diversification rates, and identify ecological correlates of diversification. ResultsBlechnaceae originated in Eurasia and began diversifying in the late Cretaceous. A lineage comprising most extant diversity diversified principally in the austral Pacific region around the Paleocene–Eocene Thermal Maximum. Land connections that existed near the poles during periods of warm climates likely facilitated migration of several lineages, with subsequent climate‐mediated vicariance shaping current distributions. Long‐distance dispersal is frequent and asymmetrical, with New Zealand/Pacific Islands, Australia, and tropical America being major source areas. ConclusionsAncient vicariance and extensive long‐distance dispersal have shaped the history of Blechnaceae in both the northern and southern hemispheres. The exceptional diversity in austral regions appears to reflect rapid speciation in these areas; mechanisms underlying this evolutionary success remain uncertain. 
    more » « less